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SUMMARY 
The present work is a discussion of the computation of unsteady laminar incompressible two-dimensional 
viscous flow past complex geometries. A new physically consistent method is presented for the reconstruc- 
tion of velocity fluxes which arise from the mass and momentum balance discrete equations. This closure 
method for fluxes makes possible the use of a cell-centred grid in which velocity and pressure unknowns 
share the same location while circumventing the occurrence of spurious pressure modes. The method is 
validated using the impulsively started cylinder problem for circular or aerofoil-like shapes at several 
Reynolds numbers of the order of 103-104. 
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1. INTRODUCTION 

One of the most important CFD topics is the computation of unsteady incompressible flow in 
complex geometry using curvilinear co-ordinate systems. Although considerable progress in 
numerical methods has been made in the last decade, the present state of the art is still 
unsatisfactory. For incompressible flows problems occur in relation to the pressure field when 
the primitive variable formulation is used. Given an initial divergence-free velocity field, the 
primary role of pressure is to keep this velocity field divergence-free, while this pressure does 
not explicitly appear in the divergence-free condition. The governing equation for pressure is 
usually derived from the momentum equation if we require incompressibility. The solution of 
this equation is not straightforward and is the most time-consuming part of the algorithm. 

In the present paper a new finite volume cell-centred two-step method is considered using the 
Cartesian velocity components and the pressure as dependent variables. A collocated grid is 
used in which all dependent variables are stored at the same locations. It is well known that a 
difficulty is usually generated by such a collocated approach, namely the possibility of spurious 
pressure oscillations caused by a null space in the matrix associated with the discrete Poisson 
equation for pressure.' To guarantee the existence of a unique solution for pressure, it is necessary 
to satisfy the integral compatibility constraint associated with the nondefinite character of the 
pressure p r ~ b l e m ~ . ~  (one of the eigenvalues of the pressure problem is zero and the pressure 
solution is unique within an arbitrary constant). On curvilinear grids it is well known that the 
use of a staggered mesh4 does not forbid the occurrence of pressure oscillations by default unless 
contravariant velocity components are used as dependent  variable^.'.^ Owing to its reduced 
storage requirements and simplicity of programming, the use of a collocated grid is thus preferred. 
Since the Cartesian velocity components are retained as dependent variables, the mass fluxes 
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involved in the integral form of the continuity equation are not available as dependent variables 
and consequently must be interpolated. This is the so-called flux reconstruction problem which 
requires the construction of an interpolation operator .I and this will be dealt with in Section 
3.2. The flux reconstruction must satisfy accuracy and monotonicity requirements while avoiding 
spurious pressure modes. A major breakthrough in this respect is due to Rhie and Chow.' These 
authors write a flux reconstruction at the interface which mimics a momentum equation: the 
pressure gradient is discretized at the interface while the remaining part of the momentum 
equation is interpolated. The resulting flux is used only in the continuity equation and this 
prevents the occurrence of spurious pressure modes. However, although the approach provides 
a satisfactory solution for the discretization of the continuity equation, the momentum equation 
is not concerned. In order to reconstruct the fluxes in a more systematic way, Schneider and 
Raw' deduce the flux reconstruction formulae from discretized momentum equations written 
on staggered grids and use the reconstructed fluxes in the discrete continuity equation as well 
as in the momentum equation. The present method, called CPI (consistent physical interpola- 
tion), shares this main idea with Reference 8 but departs from it in several characteristic features 
which will be discussed in Section 3.3. Its name stems from the fact that the fluxes are 
reconstructed explicitly from a momentum equation which is consistent with the physics (in 
contrast with Reference 8) while involving a more compact stencil than Reference 7. The present 
method, like References 7 and 8, belongs to the class of null-space-free methodsg in that the 
interpolation operator between the nodal velocity field U and the flux field u = .MU at cell 
faces can be seen as generating an approximate projection method in which the velocity field 
U itself is necessarily3 not solenoidal cell-by-cell, but only in some approximate sense, while the 
interpolated flux field u is exactly cell-by-cell solenoidal. 

The CPI method will be detailed in the general case of curvilinear co-ordinates and the results 
obtained will be validated in Section 4 by studying the unsteady flow past an impulsively started 
cylinder of circular or aerofoil-like shape. Besides being physically interesting, such problems 
have often been used as numerical test cases for unsteady flow studies involving massive 
separation. Moreover, for these cases significant detailed experiments at relatively low Reynolds 
numbers are available. 

2. THE EQUATIONS 

The unsteady incompressible Navier-Stokes equations can be written as 

v - u  = 0, 

au 
at 
- + V . F  = 0, 

where the Cartesian components F k j  of the momentum flux F are given by 

They involve the Cartesian velocity components { ok}, the pressure P ,  the Reynolds number 
Re = U,L/v,  where L is the aerofoil chord (or cylinder diameter), U ,  is the freestream velocity 
and v is the kinematic viscosity of the fluid, and the Kronecker symbol 6 k j .  From now on the 
summation convention over repeated italic indices is used unless otherwise specified. 

For applications to be considered, the complexity of the geometry prevents the use of Cartesian 
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co-ordinates. Numerical co-ordinate transformations are required in order to facilitate the 
application of boundary conditions and transform the physical domain C2 in which the flow is 
studied into a rectangular domain {t', tZ. t3}. This computational domain consists of a set of 
stacked unit cubes of sides A t i  = 1, i = 1,2,3. Each unit cube in the computational plane is a 
curvilinear hexahedron in the physical plane, the sides of which are measured by the moduli of 
the covariant vectors ai = aR/at i .  The transformation involves byproducts from the covariant 
basis. Of particular interest are (i) the area vectors b' = aj x ak (i, j, k in cyclic order) which 
measure the oriented area of a small surface of unit sides along t j  and tk on a ti = const. surface 
in the computational space, where b' is constructed from two small triangle-like surfaces in the 
physical space; (ii) the Jacobian J of the transformation from the computational space of the 
co-ordinates {ti} to the physical space of the Cartesian co-ordinates { x i } ,  which measures the 
'physical' volume of a unit cube in the computational space and is evaluated in such a way that 
ai * W = .!&--this parallelepiped appears as a hexahedron-like volume in the physical space; (iii) 
the covariant and contravariant metric tensors g i j  = ai aj and 9'' = g - ' b '  - bJ, where g ,  the 
determinant of g i j ,  is the square J 2  of the previously defined Jacobian. 

Using the chain rule derivative formula arklaxi = J - ' b f ,  we obtain 

If 0' = 8; with k = 1,2,3, equation (4) yields the so-called first geometric conservation law 
which can be expressed as follows: when properly discretized, areas of a discrete cell will sum 
to the total volume. The momentum equation (2) is written in the strong conservation form 

The convective form 

will also prove necessary in the sequel, where the so-called stretching 
by 

(7) 

functions f '  are defined 

3. THE NUMERICS 

3.1. Grid lay-out and discrete equations 

The so-called collocated cell-centred grid lay-out is used: the Cartesian velocity components 
and the pressure share the same location at the centre of the control volume (Figure 1). Owing 
to its non-standard character, it is useful to make notation conventions explicit, restricting 
ourselves to two-dimensional problems. Neighbours of the point NN at the centre of the control 
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Figure I .  Schematic sketch of presently used notations 

volume D are identified by two uppercase letters: the first is relative to the direction tl, the 
second to the direction t2. Points are identified with the letter M (minus one), P (plus one) or 
N (null). The fluxes JU' involving the contravariant velocity components U' are located on the 
faces of the control volume (identified by a lowercase letter) in the direction of the normal to 
the face. Grid points are located at vertices of the control volume. In the following O',(NN) 
will be the unknown kth Cartesian velocity component at point NN. The flux at cell interface 
pN is identified as (JU'MpN). Although non-standard, the present notation allows a straightfor- 
ward coding of the method, particularly in the three-dimensional case. 

The discrete divergence of the flux @ over the control volume D is simply 

(Ai@')(") = @'(pN) - @'(mN) + @'(Np) - 02(Nm), (9) 

so that the discrete continuity equation results from @ = JU.  
The time derivative is discretized using a second-order-accurate backward Euler method 

involving the time levels to = t - At and too = t - 2A.t besides the actual time level t. We then 
have 

a9 
-- x e l@ + e0@O + eoo@oo, 
d t  

with 

@ z Nr),  @O x +(to), moo % #too), (10) 

Using (9) and (10) yields the motion equations 

J-'(NN)Ai(6jUj)(NN) = 0. (1  1) 

1 
el On(") + [eo D',O(NN) + eoo O',Oo(NN)] + ~ A,-(bjFkj)(") = 0. (12) 

J(") 
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In the discrete divergence at point NN in (12) the linearized momentum flux bi.F, is defined 
at interfaces pN, mN, Np and Nm as indicated in (9). For instance, 

where U* is a prediction of the velocity field at the actual time. An iterative procedure is 
thus required at time t in order to update U*, starting with U* = Uo. The approximation of 
(13) and of similar fluxes at mN, Np and Nm is carried out using a centred scheme. For instance, 
with i = 1, 

(b. Fkb’N) c,(pN)ok(pN) + fb:(PN)CP(PN) + P(”)1 - dl ,(pN)Cok(pN) - Ok(”)I  
- $dl,(pN)[ok(PP) + ok(NP) - ok(PM) - ok(NM)], (14) 

where ci = b * U* and dim = b’- a JRe are evaluated at pN for i = 1,2. Similar expressions 
are obtained at other face points mN, Np and Nm. 

3.2. The reconstruction problem and its formal solution 

I t  appears that besides unknown nodal values of the Cartesian velocity components, expres- 
sions such as (14) involve the values Uk(pN) which are also unknown, but at points which 
are not nodalpoints. This introduces the so-called reconstruction problem: fluxes such as U,(pN) 
which are not defined at nodal points must be expressed in terms of nodal unknowns. The 
interpolation procedure which solves the reconstruction problem must avoid spurious pressure 
modes which may exist when collocated grids are used. One of the most efficient ways to 
overcome this difficulty is to use a physical interpolation approach in which a velocity integration 
point value such as Ok(pN) is expressed not only in terms of values of o k  at the neighbouring 
nodes of pN, the set of which (Figure 1) is denoted NB(pN) = {NN, PN, MN, PP, NP, NM}, 
but also in terms of values of other velocity components and pressure at  NB(pN). The most 
classical approach is the Rhie and Chow interpolation,’ where Q‘,(pN) involves besides NB(pN) 
the nodes PP.P, PP.N and PP.M (Figure 2(a)). Another interpolation, due to Schneider and 

Figure 2(a). The Rhie and Chow influence stencil of point NN 
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Figure 2(b). The Schneider and Raw influence stencil of point NN 

Figure 2(c). The influence stencil of point NN for the CPI method 

Raw,' involves several integration point values (Figure 2(b)) for the set NB(pN). In the following 
we present the consistent physical interpolation (CPI) which determines uk(pN) from the 
solution of the convective form of the momentum equations at point pN. This interpolation 
involves the set of neighbours NB(pN) of influencing nodes (Figure 2(c)). The result can be 
written at pN as 

(el  + DpN)Ot(PN) = 1 C~B(pN)okCNB(pN)l + 1 C%(pN)P~NB(pN)l + Sk(pN) (15) 
NB(PN) NB(PN) 



FLOW COMPUTATION USING THE CPI METHOD 77 1 

and in a similar way at mN, N p  and Nm. Equation (15) indicates that integration point 
values Uk(pN) are given by an explicit formula, in contrast with the closure of Reference 8 
which requires the inversion of a 4 x 4 system. For the other interfaces of the control volume 
D the sets of active neighbours are 

NB(mN) = {MN, NN, MP, NP, MM, MN}, 

NB(Np) = {NN, NP, NM, PM, PN, PP}, 

NB(Nm) = INN, PN, MN, PM, NM, MM}. 

The influence coefficients satisfy the consistency conditions 

The former relation (16a) indicates that U,(pN) involves a weighted interpolation of 0, 
at neighbouring nodal values. The latter relation (16b) corresponds to the fact that the summation 
over pressure values is of the gradient type. I t  can be shown that on a uniform Cartesian grid 
the present interpolation formula is second-order-accurate compared with Reference 8 because 
of the treatment of the diffusion term in Reference 8. We shall need the generalized form 

in the sequel. Equation (15') can be viewed as a definition of the so-called pseudovelocity 

such that 

3.3. The CPI method using an exponential or a hybrid discretization 

We still have to demonstrate how the expression of the influence coefficients C" and Cpk 
and of the source term S, in (16) can be obtained from a discrete scheme for the momentum 
equation written at f = pN, mN, Np, Nm. This will now be explained for the fluxes at point 
pN using the momentum equation written at pN. 

The multiexponential scheme consists of using an exponential scheme in both directions. Let 
us consider the differential equation along, say, 5 = t1 : 

a2u du 
at2 a t  

d - -  = c - - -  +S. 

The corresponding exponential scheme on a uniform grid of spacing h is 

CMU,+CNUN+CpUp=SN, 
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This involves the mesh Peclet number y = ch/d. The exponential scheme can be applied in 
each direction to equation (7) using mesh Peclet numbers y l  = cIhl /d , ,  and y 2  = c,h,/d,,. 
(Notice that on curvilinear grids the spacings h ,  and h,  along (' and can be taken equal to 
1, except close to the boundaries where they may take the value f.) The result written at pN is 

= [ - (d. "i"> + ui  $](pN) - e, o:(pN) - e,, U:O(pN), 
Im ayiagm 

where the influence coefficients at pN are deduced from (19) as 

with i = 1, 2. The second-order cross-derivatives in (20) are treated using a centred scheme: 

Finally, the pressure gradient at pN in (20) is approximated as 

a p  1 
u: - (pN) z ~ ~ a: (pN)[P(NP) - P(NN)], (224 

u; (pN) 2: uf(pN)[P(PP) + P(NP) - P(PM) - P(NM)]. ( 2 W  

at1 2h I 
ap 

at2 4h2 

The resulting influence coefficients in (15) are obtained by substitution of (21) and (22) into 
(20). The result is given in Appendix 1. 

Instead of a multiexponential scheme, the closure for O',(pN) may be obtained from a hybrid 
scheme corresponding to the discretization of the first-order derivative aU/a[ according to 

The upwind parameter a is a function of the mesh Peclet number y and can be computed 
according to 

1 + (y - l)eY 

y(eY - 1) 
a =  
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Then the reconstructed velocity at pN, ok(pN), is given by 

a2uk 

a y i a y m  
= [-(dim ~ ~ -) + a: ai](pN) - e, o;(pN) - e,, O;O(pN). 

Using (22) and centred second-order derivatives yields again the influence coefficients in (15). 

3.4. The equations for  the nodal unknowns 

Upon substitution of closures (15') written at pN, mN, nP  and nM into the discrete 
momentum equation (12) where relations such as (13) and (14) have been accounted for, we 
obtain the following discrete scheme for the momentum equations corresponding to k = 1,2: 

Ce1 + DU(")luk(") = c KiB(NN)uk[NB(NN)]  
NB(NN) 

+ c Kk%(NN)PCNB(NN)] + xk(NN), (26) 
NB(NN) 

where the velocity and pressure unknowns involved are located only at NN and at the eight 
nodal neighbours of the set NB(NN) = {MM, MN, MP, NM, NP, PM, PN, PP}; the sum- 
mations are over the eight corresponding contributions. The influence coefficients K&NN, 
involved in the summation for the pressure terms result from the identity 

If the closures such as (15') are substituted into the continuity equation (11). we obtain 
from a pressure equation of the form 

the pressure discrete equation 

c K%(NN)O~"B(N~)I + c K&NN)P"B(")] = Ed"). ( 2 W  
Nil(") NB(NN) 

The two momentum equations (26) (k = 1,2) and equation (28b) written at each inner 
point NN(i,j) in the computational space generate the system of unknowns. We group 
the three unknowns O,, 02,  and P at each grid point (i.j) to  define a vector X(i,j) = 
(1 Ol(i. j) 02(i, j) P(i, j)IIT with three components and we order the unknowns from values i = I 
to i = i,,, and for any given value of i from j = 1 to j = jmaX. When the i(j - l)th, ijth and 
i(j + 1)th rows of the matrix A corresponding to (26) (k = 1) (26), (k = 2) and (28b) are also 
grouped in this order, the matrix A appears as a block 3 x 3 nine-diagonal matrix whose 
non-vanishing elements in the ijth block 3 x 3 row are located on the (i - 1)(j - l)th, (i - l)jth, 
(i - l ) ( j  + 1)th columns (influence coefficients of points MM(i, j), MN(i, j), MP(i, j) respectively), 
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on the i(j - l)th, ijth, i(j + l)th columns (influence coefficients of points NM(i,j), NN(i,j), NP(i,j) 
respectively) and on the (i + l)(j - l)th, (i + lbth, (i + l)(j + l)th columns (influence coefficients 
of points PM(i,j), PN(i,j), PP(i,j) respectively). Appendix I1 presents the resulting matrix A and 
the detailed structure of a characteristic elementary block; this demonstrates the optimal 
compacity of the CPI method with respect to Reference 7. 

Equation (28a) can be viewed as a pressure equation if the substituted closure takes the form 
of (16) instead of ( 1  5’): 

3.5. Pressure-velocity coupling algorithm 

by the PIS0 algorithm;” it consists of the following steps. 
The algorithm which yields a coupled solution of the system (26), (29) is directly inspired 

1. 
2. 
3. 
4. 
5. 
6. 

7. 
8. 

9. 

4. I .  

Initialize the velocity field and the pressure field at t = to .  
New time step t = t + At.  
Start iterative procedure with 0, = U:, P = Po,  U , ( f )  = 0,O(f). 
Compute the reconstruction coefficients from the field of step 3. 
Solve the momentum equations to obtain a new prediction for U,. 
Solve the continuity equation to obtain pressure P with coefficients obtained from step 4 
and Ok from step 5. 
Correct the velocity field with coefficients from step 4, 0, from step 3 and P from step 5. 
Reconstruction at interfaces to get Uk(f) with coefficients from step 4, P from step 6 and 
Ok from step 7. 
If non-linear residuals are low enough, go to step 1 and update t ;  otherwise, go to step 3 
and update the iteration count within time step t .  

4. RESULTS 

In froduct ion 

As already mentioned in Section 1, the CPI method is validated using the impulsively started 
cylinder problem. The cylinder is circular or aerofoil-shaped. The former test case has been 
computed in detail in References 11 and 12 using the streamfunction-vorticity formulation. The 
results of the calculations were tested against experiments’ for two moderately high Reynolds 
numbers for which the flow is laminar, namely Re = 3000 and 9500. The latter test case adds 
the complexity of a sharp trailing edge. An NACA 0012 shape is used, which makes it possible 
to carry out a detailed study of the dynamic stall over the aerofoil as a result of the massive 
separation which develops along the upper surface of the aerofoil. This geometry has often been 
calculated using the vorticity-streamfunction formulation, for the impulsive gust case as well as 
for superimposed pitching motions of the aerofoil,’ 5-21 or the velocity-vorticity formula- 
t i ~ n . ” - ’ ~  

The primitive variable formulation has not been considered as often, although it is better 
suited to turbulent models incorporated in the unsteady ~imulation.’~-’~ For incompressible 
flows suitable finite difference or finite volume methods have been p r o p o ~ e d , ~ - ’ ~ - ~ ~  while some 
finite element simulations are also available 
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Figure 3. Evolution with time of non-linear residuals of momentum equations and continuity equation for exponential 
reconstruction. Impulsive start of circular cylinder at Re = 3000, mesh 120 x 100. Notice that L f ,  and 0, residuals 

can hardly be distinguished 

In the present calculations a constant non-dimensional time step Ar = 0.01 is used starting 
from a unit uniform flow field. At each time step the non-linear residuals are decreased by three 
orders of magnitude. This is considered to be sufficient insofar as we focus on results relative 
to the onset of the flow development to be compared with experimental data.)’.’’ 

4.2. Impulsively started circular cylinder 

Case 1 (Re = 3000). Figures 3 and 4 present the evolution with time of the residuals of 
the (momentum) equations for O t  and Oz and of the mass equation for V.U.  Such figures 
result from the two different schemes used for the flux reconstruction, namely the exponential 
(Figure 3) and hybrid (Figure 4) schemes. Each local maximum indicates the converged result 
at each time step of non-linear iterations. For each time step 15-25 non-linear iterations are 

Figure 4. Evolution with time of non-linear residuals of momentum equations and continuity equation for hybrid 
reconstruction. Impulsive start of circular cylinder at Re = 3o00, mesh 120 x 100. Notice that 0,  and 0, residuals 

can hardly be distinguished 
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Figure 5. Impulsive start of circular cylinder at Re = 3000. Evolution with time of recirculation length normalized with 
cylinder diameter. Exponential reconstruction 

used to lower the residuals by three orders of magnitude for the momentum equations. For a 
given total number of iterations the number of computed time steps is higher with the exponential 
reconstruction than with the hybrid reconstruction. Also, the level of V * U-residuals is lower 
with the hybrid reconstruction than with the exponential reconstruction, especially after 700 
iterations, corresponding to t % 0.25, at which the birth of the primary eddy occurs. The 
evolution with time of the recirculation length is presented in Figures 5 and 6 for the exponential 
and hybrid reconstructions respectively. Results which look very similar are in good agreement 
with experimental datai3 as well as with calculations" using the vorticity-streamfunction 
formulation. We notice that a slight grid dependence is present for the hybrid reconstruction 
scheme, in contrast with the grid-independent results using the exponential reconstruction 
scheme. The onset of the primary eddy is found slightly later than in the boundary layer theory 
which yields t ,  = 0.175: the exponential reconstruction scheme produces 0.19 < ts  ,< 020 and 

1 

0.9 

0.8 

0.7 

0.6 

3 0.5 

0.4 

0.3 

0 . 2  

0.1 

0 

0 0.5 I 1.5 2 2.5 3 

t 

Figure 6. Impulsive start of circular cylinder at Re = 3000. Evolution with time of recirculation length normalized with 
cylinder diameter. Hybrid reconstruction 
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Figure 7.  Impulsive start or circular cylinder at Re = 3000. Comparison of particle traces" (upper part) with computed 
streamlines (lower part) at r = 2.5 

the hybrid reconstruction scheme 023 6 t ,  6 0.24. In both cases this is substantially later than 
in Reference 11, where a special procedure based on a Stokes solution is used immediately after 
the impulsive start. On the other hand, a consensus value of about 0.16 is usually claimed to 
be Reynolds-independent.14 A secondary eddy appears at t z 0.91, slightly later than in 
Reference 11 where r x 044. A comparison at r = 2.5 between computed streamlines and 
experimental path lines is provided in Figure 7. The agreement is good in view of the 
circumferential grid resolution: twin secondary eddies (the so-called a-phenomenon) are located 
at OEl z 42 O and OE2 x 55 O ,  experimental values" are O,, z 43 O and OE2 z 54 ' and calcula- 
tions" yield O, ,  x 45 and O,, x 56 '. Tertiary secondary eddies (t) appear also for t z 2.13. The 
distribution of u,  along the symmetry axis of the wake is compared with experimental data" 
in Figures 8 and 9 using the exponential and hybrid reconstructions respectively. Again the 
sensitivity of solutions to the grid is low and a very slight discrepancy with experiments around 
t = 2 is apparent. Taken as a whole, the results appear very similar with both reconstructions 
and almost perfectly grid-independent, at least for the times considered. 

Case 2 (Re = 9500). Since the same general conclusion results from the consideration of this 
case, we present only the results obtained with the hybrid reconstruction scheme on the finest 
grid. Figure 10 compares the recirculation length with experimental data13 and with calcula- 
tions." The birth of the primary eddy occurs at about t = 020;  the secondary eddy appears at 
about t x 0.83. For r = 1.75 its location is 44 O < O < 50 "C, while calculations" yield 45 6 
0 6 51 '. Experiments are compared with the results of the computation in Figure 1 1 for t = 0-75, 
1,1.25 and 1-5, demonstrating the ability of the method to capture the P-phenomenon (maximum 
increase in the intensity of the primary eddy away from the axis) in spite of a slight under- 
estimation of the intensity of the primary eddy. 
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Figure 8(a). Impulsive start of circular cylinder at Ru = 3000. Evolution with time of distribution of O,-velocity 
component along symmetry axis of wake. Exponential reconstruction scheme with 100 x 80 grid 
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Figure 8(b). Impulsive start of circular cylinder at Re = 3000. Evolution with time of distribution of UO,-velocity 
component along symmetry axis of wake. Exponential reconstruction scheme with 120 x 100 grid 

4.3. NACA 0012 aerofoil 

Again calculations have been carried out with the two reconstruction schemes for the fluxes 
using several grids (80 x 60, 90 x 100, 100 x 120-the second number gives the radial number 
of points). Insofar as the onset of the flow is studied, the results appear grid-independent. The 
analysis is focused on the 80 x 60 grid resulting from a Joukowski transformation similar to 
that used in References 13 and 14 and clustered close to the aerofoil (Figure 12(a)). The flux 
reconstruction uses the exponential scheme and the far-field boundary located at six chord 
lengths from the aerofoil. The first grid points away from the wall are located at 001 L from the 
aerofoil. Two cases have been considered: Case I-incidence 34 O, Re = 1000, impulsive start; 
Case 2-incidence 30 ", Re = 3000, impulsive start. For both cases experimental data are 



FLOW COMPUTATION USING THE CPI METHOD 779 

- 
5 

0.8 

0.4 

0 

-0.4 

1 

-1.6 
0.5 1 1 .s 2 2.5 

(4 x/D 

Figure %a). Impulsive start of circular cylinder a t  Re = 3000. Evolution with time of distribution of u,-velocity 
component along symmetry axis of wake. Hybrid reconstruction scheme with I00 x 80 grid 
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Figure 9(b). Impulsive start of circular cylinder a t  Re = 3000. Evolution with time of distribution of O,-velocity 
component along symmetry axis of wake. Hybrid reconstruction scheme with 120 x 100 grid 
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Figure 10. Impulsive start of circular cylinder at Re = 9500. Evolution with time of recirculation length normalized 
with cylinder diameter. Hybrid reconstruction with I20 x 100 mesh 
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Figure 1 ](a). lmpulsive start of circular cylinder at Re = 9500. Comparison of particle traces” (upper part) with 
computed streamlines (lower part) at r = 0.75 

Figure I I(b). lmpulsive start of circular cylinder at R e  = 9500. Comparison of particle traces” (upper part) with 
computed streamlines (lower part) at I = I 
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Figure I I(cL Impulsive start of circular cylinder at Re = 9500. Comparison of particle t r a c e ~ ’ ~  (upper part) with 
computed streamlines (lower part) at r = 1.25 

Figure I I(d). Impulsive start of circular cylinder at Re = 9500. Comparison of particle traces” (upper part) with 
computed streamlines (lower part) at r = 1.5 
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Figure I2(a). 0-type grid used around NACA 0012 aerofoil 

- 

(b) 
Figure 12(b). Schematic sketch of notations 
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Figure 13. impulsive start of aerofoil at Re = IOOO. incidence 34 ". Evolution with time of U,-velocity component 

along AA' as a function of normalized distance to aerofoil 

Case I. Figure 13 shows the evolution of the velocity component U ,  parallel to the direction 
of the oncoming flow with the distance to the aerofoil centre along AA' (see Figure 12(b)). The 
calculation reproduces the overshooting velocity profile (Figure 13). However, the magnitude of 
the velocity is slightly overestimated with respect to the experimental data. 

A comparison between calculations and experiments is provided in Figures 14-19 for the 
development of the stall phenomenon. For several times following the impulsive start we have 
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(b) (d)  
Figure 14. Impulsive start of aerofoil at Re = IOOO, incidence 34 ”, t = 04:  (a) visualization of path lines; (b) computed 

streamlines; ( c )  distribution of wall pressure coefficient; (d) wall vorticity distribution 
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Figure 15. Impulsive start of aerofoil at Re = IOOO, incidence 34 ", f = 1.6: (a) visualization of path lines; (b) computed 
streamlines; (c) distribution of wall pressure coefficient; (d) wall vorticity distribution 



FLOW COMPUTATION USING THE CPI METHOD 785 

400 F 300 r c 

I b' c 
0 0.2 0.4 0.6 O X  1 

XIC 

Figure 16. Impulsive start of aerofoil at Re = IOOO, incidence 34 ". r = 2.8: (a) visualization of path lines; (b) computed 
streamlines; (c) distribution of wall pressure coefficient; (d) wall vorticity distribution 
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Figure 17. Impulsive start of aerofoil at Rr = IOOO, incidence 34 ”, t = 3.2: (a) visualization of path lines; (b) computed 
streamlines; (c) distribution of wall pressure coefficient; (d) wall vorticity distribution 
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Figure 18. Impulsive start of aerofoil at Re = IOOO. incidence 34 ”, r = 3.6: (a) visualization of path lines; (b) computed 
streamlines; (c) distribution of wall pressure coefficient; (d) wall vorticity distribution 
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Figure 19. lmpulsive start of aerofoil at Re = IOOO, incidence 34 ", I = 4: (a) visualization of pathlines; (b) computed 

streamlines; (c) distribution of wall pressure coefficient: (d) wall vorticity distribution 
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Figure 20. Impulsive start of aerofoil at Re = 3000, incidence 30 ”. r = 0.5, 1.0. 1.5, 2.0. Evolution with time of 
0,-velocity component along AA‘ as a function of normalized distance to aerofoil. Comparisons between present 
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Figure 20(b). Impulsive start of aerofoil at Re = 3000, incidence 30 -, t = 2.5, 3.0, 3.5. Evolution with time of o,-velocity 
component along AA’ as  a function of normalized distance to aerofoil. Comparisons between present calculations and 

experimental data” 

plotted (a) the visualization, (b) the set of computed streamlines, (c) the wall pressure coefficient 
and (d) the wall vorticity distribution. In the very first instants (t < 0.4) after the impulsive start 
a small eddy is generated (Figures 1qa) and 14(b)). The stall phenomenon starts afterwards. 
First the vortex (a) develops on the upper part of the leading edge and moves along the upper 
surface of the aerofoil towards the trailing edge (Figures 15(a) and 15(b)). The development of 
the vortex (a) is easily seen from the distribution of the wall pressure coefficient presented in 
Figure 15(c) for corresponding time instants. In the second step a stable pair of secondary eddies 
(b) and (b‘) develops at the leading edge while the main vortex (a) is still growing. The pair (b-b’) 
makes the pressure coefficient decrease and increases in size, since (b) is entrained while (b’) is 
fed with fluid from (a). In the third step the main vortex (a) is shed and a new eddy (c) appears 
at the trailing edge (Figures l q a )  and 16(b)), making the pressure coefficient increase again 
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Figure 2qc). Impulsive start of aerofoil at Re = 3000, incidence 30 ", f = 0.5, df  = 0 0 0 5 .  Zoom of evolution with time 
of U,-velocity component along AA' as a function of normalized distance to aerofoil. Influence of order of reduction 

of non-linear residuals (curves corresponding to two and three orders of residual reduction are identical) 

(Figure 16(c)). The growth of the eddy (c) (Figure 17) raises the pressure coefficient and the eddy 
(b') is absorbed by (c) as indicated in Figures 18 and 19. The other eddy (b) pushes (c) downstream. 
Finally, as (c) is shed, the pressure coefficient falls again. The Von Karman street is thus created. 

Case 2. Case 2 is more difficult since the Reynolds number is higher. For this reason two 
grids have been considered: for the coarse grid which involves 80 x 60 points a time step 
Ar = 0.01 is used; for the fine grid which involves 180 x 130 points a time step At = 0-005 is 
used. Case 2 also allows a quantitative comparison up to t = 3.5, since measurements of velocity 
profiles along the normal AA' are also available in this case. The evolution with time of U1 
and O2 along AA' is presented in Figures 20 and 21 respectively. The results, which are 
completely grid-independent (and At-independent), show that the velocities are slightly over- 
estimated as in Case 1. It appears (Figure 20c) that on a given grid with a given time step 
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Figure 2l(a). Impulsive 
O,-velocity component 

start of aerofoil at Re = 3000, incidence 30 ", f = 0.5, 1.0, 1.5. 2.0. Evolution with time of 
along AA' as  a function of normalized distance to aerofoil. Comparisons between present 

calculations and experimental data" 
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Figure 21(b). Impulsive start of aerofoil at Re = 3000, incidence 30 ', r = 2.5. 3.0, 3.5. Evolution with time of u,-velocity 
component along AA' as a function of normalized distance to aerofoil. Comparisons between present calculations and 

experimental data" 

non-linear iterations over U* are required, since a linear extrapolation from U(to) and U(roo) 
leads to results noticeably different for t < 0.5. A residual reduction by one order of magnitude 
is sufficient for t < 0.5, where the flow evolves quite quickly. Moreover, for larger times Figures 
20 and 21 indicate a shift between calculations and experiments: calculations lead experiments 
significantly, the grid-independent trend being especially apparent for 02. 

5. CONCLUSIONS 

We have presented an accurate and efficient primitive variable method for the solution of the 
Navier-Stokes equations in generalized co-ordinates on non-staggered grids. Through numerical 
tests we have shown that the method produces suitable results. The computed results, in good 
agreement with experimental data, demonstrate the ability of the method to compute highly 
unsteady flows such as the flow after an impulsive start. 

APPENDIX I 

We present here the detailed form of equation (15) giving Uk(pN): 

where D,, = C,,(pN) + C,,(pN) and Sk(pN) = -eoot(pN) - e,,Oto(pN) involves the known 
unsteady contributions. The second line of (30) specifies the summation over the velocity 
contributions at the set NB(pN) of active nodes contributing to the flux at pN. The influence 
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coefficients resulting from the exponential scheme are given by 

CEN = -CMI(PN), 

CEM = -+CM2(pN) - ad12(pN)7 

CFN = -CM2(PN)7 C,UP = -fCP,(PN) - $d,,(pN), 

CFP = -tCP2(pN) + $d12(pN), 

cFM = -iCM2(pN) + $d12(pN)- (31) 
Equation (16a) is easily verified since 

C:B(pN) = -CMl(PN) - CPI(PN) - CM2(pN) - CP2(PN) = CPl(PN) + CP2(PN)EDpN* 
NB(pN) 

The third line of (30) specifies the summation over the pressure contributions at the set 
NB(pN) of active nodes contributing to the flux at pN. The corresponding influence coefficients 
from the exponential scheme are 

(32) p; = - c P k  N N  - - zUr,(pN), I 1 c;: = cc; = -cLh = C-L = aa:(pN) 
and satisfy the consistency condition (16b), 

1 C&(pN) = O, 
NB(PN) 

expressing that the pressure summation is of the gradient type. The same features are found 
if a hybrid scheme is used instead of the multiexponential scheme. For the sake of conciseness 
the relations (3 1) and (32) specifying the corresponding influence coefficients in (30) are omitted. 
The metric quantities in (31) and (32) are calculated from the knowledge of the set of points 
defining a grid which is twice as fine as the grid involving points 0 in Figure 1. The Peclet 
numbers, which are also required at point pN, are computed using a linear interpolation in the 
computational domain between nodal points NN and PN. 

APPENDIX I1 

The fully coupled system: the 0th block 3 x 3 row of A such that AX = B is 

( II ... O... MM(i.j) MN(i,jJ MP(i,j)..O..NM(i,j) NN(i,j) SP[i,j)..O..PM(i,j) PS(i,j) PP(i,j) ... O... II) 

block 3 x 3 diagonal element 
s: 
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The diagonal block element corresponding to the element X( i ,  j) is 

) ( K &  K &  G G  

1 

e ,  +D" 0 - Kk; 
"(I, j ) -  0 e ,  + D" - K i G  (i, j). 

The block element corresponding to the unknown X( i ,  j + 1) is 

- K &  0 -KAF 

( Kgb KL'p KgF 
N P ( i , j ) E  0 - K i p  -KiF (i, j ) .  

The right-hand side corresponding to the known vector B(i, j) is 

I .  
2. 

3. 

4. 
5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 
15. 

16. 
17. 
18. 
19. 

20. 

21. 
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